The Crystal and Molecular Structure of Tetragonal L-Cystine

BY MICHAEL O. CHANEY* AND LARRY K. STEINRAUF

Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, U.S.A.

(Received 8 October 1973; accepted 27 November 1973)

The crystal structure of tetragonal L-cystine has been determined from three-dimensional X-ray data. The space group is $P4_1$, with a=6.710 (5) and c=21.73 (1) Å; Z=4. The structure was solved by a combination of the E^2-1 Patterson function to locate the two S atoms, block-diagonal least-squares refinement of the S coordinates, and tangent-formula phase refinement. The final structure refinement used the full-matrix least-squares method with anisotropic temperature factors for S, O, and N and isotropic terms for C and H. Difficulty was encountered during the final refinement since the molecule contained a pseudo-twofold axis of symmetry. The final R index was 0.097, based on 962 independent non-zero reflections. The disulfide dihedral angle was found to be 69.3° . The molecular conformation is observed to be similar to that of hexagonal L-cystine, with a right-handed disulfide chirality.

Preparation

Introduction

Cystine (I) structure determinations have been undertaken in this laboratory mainly to determine the range of possible crystal conformations and correlate them with disulfide chirality.

$$+ NH_3 + NH_3$$

$$+ OOC-CH-CH_2-S-S-CH_2-CH-COO$$

(I)

Previous structure determinations of L-cystine compounds have shown that N, N'-diglycyl-L-cystine (Yakel & Hughes, 1954), L-cystine dihydrochloride (Steinrauf, Peterson & Jensen, 1958), L-cystine dihydrobromide (Peterson, Steinrauf & Jensen, 1960), and L-cystine diamide dihydrochloride (Chaney & Steinrauf, 1968) all possess a left-handed disulfide chirality and similar molecular conformation. Hexagonal L-cystine (Oughton & Harrison, 1959) and now tetragonal L-cystine in this work possess a right-handed disulfide chirality and a molecular conformation which is different from the above class of cystine compounds. The definition of disulfide chirality is illustrated in Fig. 1.

* The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206, U.S.A.

Fig. 1. Illustration of right-handed and left-handed disulfide chirality by use of Newman projections. The projections are down the S-S' bond.

Experimental

L-Cystine was dissolved in a warm 6N ammonium hydroxide solution and crystallized by evaporation at room temperature. Both plates of the hexagonal form and prisms of the tetragonal form were obtained, the former being by far the more numerous.

Crystal data	
$C_{0}H_{12}N_{2}O_{4}S_{2}$	F.W. 240·3
a = 6.710 (5) Å	μ (Mo K α) = 5.24 cm ⁻¹
c = 21.73(1)	Crystal size:
	$0.02 \times 0.02 \times 0.016$ cm
$D_{calc} = 1.642 \text{ g cm}^{-3}$	Z = 4
$D_{\rm obs} = 1.622$	Space group: $P4_1$.

The unit-cell dimensions and estimated standard deviations were obtained from Weissenberg photographs, with calibration lines from aluminum $(a_0 = 4.0489$ Å at 20 °C) superimposed. Precession and Weissenberg photographs of a tetragonal crystal showed systematic 00*l* extinctions for l = 4n + 1, 2, 3. Because these photographs exhibited possible mirror symmetry, it was difficult to determine the Laue group (4/m or 4/mmm). Also, the h00 reflections for h = 2n + 1 were either absent or very weak. As a result, the space group assignment was ambiguous and was limited to $P4_1$, $P4_12_12$, and $P4_122$. The enantiomorphs to the above space groups were unlikely candidates, since it is known that molecules of L-cystine pack in a left-handed sense about a screw axis.

Intensity data

Intensity data were collected with Zr-filtered Mo Ka $(\lambda = 0.71069 \text{ Å})$ radiation by the sixth-scan method (Pinkerton & Steinrauf, 1967) on a Supper-Pace autodiffractometer about the b^* axis (k = 0-7) out to a minimum spacing of 0.8 Å. 2226 reflections ($\pm h, k, l$) were measured, 2104 of which were observed greater than zero. This set of data was twofold redundant for space group $P4_1$ and fourfold redundant for the space groups with 4/mmm Laue symmetry. The equivalent data sets $(F_{hkl} \equiv F_{\bar{k}hl})$ were used to scale between levels, and the twofold redundant data were used to solve the structure. Because of the low absorption coefficient (5.24 cm⁻¹) and the small size of the crystal, absorption corrections were neglected. Both structure factors and normalized structure factors |E| were calculated after corrections for Lorentz and polarization effects had been applied. The atomic scattering factor curves were taken from International Tables for X-ray Crystallography (1962).

An examination of the Patterson map revealed a peak approximately 2 Å from the origin along the c axis, which suggested that the disulfide bond may be in this direction. The same conclusions were reached from efforts to pack four L-cystine molecules from hexagonal L-cystine (Oughton & Harrison, 1959) into the tetragonal unit cell. When the molecules were oriented with their disulfide bonds parallel to c and in either the (110), ($\overline{110}$), ($\overline{110}$), or ($1\overline{10}$) planes, a set of molecular dimensions calculated from the tetragonal cell parameters was in excellent agreement with that of hexagonal Lcystine (Table 1).

After the disulfide orientation was known, the Harker sections were interpreted, and the positions for the two non-equivalent sulfurs, S(1) and S(2), were determined. These positions were refined by block-diagonal leastsquares calculations (unit weights and $B = 3.5 \text{ Å}^2$) to an R index of 0.396. The quantity minimized was $\sum w(F_o F_c$)². All initial considerations indicated the structure to be in the lower-symmetry space group $P4_1$. Because the origin along the 4_1 screw axis was not defined by symmetry, the z coordinate of S(1) was held fixed during refinement. The least-squares program used was a much modified version of the Sparks, Trueblood & Okaya program (World List of Crystallographic Computer Programs, 1966). Further refinement was continued with the tangent formula. 237 calculated phases $(|E_h| \ge 1.5)$, based on the two sulfur positions, gave an R = 0.183 ($R = \sum ||E_h|_{obs} - |E_h|_{calc}| / \sum |E_h|_{obs}$), after three cycles of tangent refinement. The new phases were used to calculate an E map, from which 10 of the 14 atoms were located. The remaining non-hydrogen atoms were located from a Fourier map, based on the known atom positions. Further block-diagonal least-squares refinement, using unit weights and anisotropic temperature factors for the sulfur, oxygen, and nitrogen atoms, reduced the R index to 0.125. Fourier difference maps indicated that no anisotropic corrections were neces

Table 1. A comparison of the molecular dimensions for hexagonal and tetragonal L-cystine

	First dimension perpendicular to disulfide (Å)	Second dimension perpendicular to disulfide (Å)	Third dimension parallel to disulfide (Å)
Tetragonal	$4.72\left(\frac{a+b}{2}\right)^*$	$4.72\left(\frac{a+b}{2}\right)$	5·43 (c/4)
Hexagonal	4·69 (c/12)	$4.70\left(\frac{a_1+a_2}{2}\right)$	5·42 (<i>a</i> ₁)

* The symbols enclosed in parentheses represent the directions along which the dimensions were calculated.

Table 2. Final atomic parameters with estimated standard deviations in parentheses

All values except the isotropic temperature factors (Å²) are multiplied by 10⁴. The anisotropic temperature factors are expressed in the form exp $[-(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + 2B_{12}hk + 2B_{13}hl + 2B_{23}kl)]$.

	x	У	Z	B_{11} or B_{1so}	B ₂₂	B ₃₃	B12	B_{13}	B ₂₃
S(1)	1427 (5)	5956 (5)	-461*	161 (8)	145 (7)	24 (1)	35 (6)	-6(2)	-5(2)
S(2)	1508 (5)	6603 (5)	457 (3)	185 (8)	179 (8)	18 (Ì)	74 (6)	24 (2)	25 (2)
O (1)	5411 (16)	2951 (13)	331 (4)	262 (25)	167 (20)	10 (2)	82 (18)	5 (5)	-5(5)
O(2)	6436 (16)	6022 (17)	380 (4)	247 (27)	336 (32)	9 (2)	-123(23)	-10(5)	0 (6)
O(3)	- 1906 (15)	10269 (16)	-673 (5)	204 (26)	267 (28)	16 (2)	126 (21)	-13(5)	-13 (6)
O(4)	1338 (16)	10919 (14)	- 770 (5)	264 (27)	166 (22)	14 (2)	- 79 (19)	22 (6)	4 (5)
N(1)	4952 (16)	2926 (16)	-877 (5)	175 (24)	162 (24)	9 (2)	40 (18)	3 (5)	8 (5)
N(2)	-1766 (16)	9917 (15)	537 (5)	192 (26)	125 (21)	12 (2)	30 (18)	-8(6)	5 (5)
C(1)	3950 (18)	6417 (18)	- 747 (6)	2.47 (19)					
C(2)	5506 (16)	4844 (18)	- 579 (6)	2.38 (19)					
C(3)	5834 (17)	4586 (17)	102 (6)	$2 \cdot 28$ (18)					
C(4)	1815 (18)	9266 (19)	483 (6)	2.73 (20)					
C(5)	73 (17)	10526 (16)	248 (6)	2.03 (17)					
C(6)	-190(19)	10536 (18)	-467(7)	2.82(21)					

* This parameter was held constant during refinement.

sary for the carbon atoms. Because the 00/ data suffered severely from what was probably extinction, it was deleted.

Table 3. Final positional parameters for hydrogen atoms

Atomic positions are multiplied by 10³. All hydrogen atoms were assumed to have an isotropic temperature factor B=3.5 Å².

Hydrogen atom	Attached to) <i>x</i>	у	Ζ
H(1)	C(1)	442	779	- 58
H(2)	C(1)	386	649	-123
H(3)	C(2)	688	537	- 75
H(4)*	N(1)	388	232	-111
H(5)*	N(1)	504	199	- 52
H(6)	N(1)	611	271	-116
H(7)	C(4)	307	962	22
H(8)	C(4)	205	966	95
H(9)	C(5)	45	1199	37
H(10)	N(2)	- 300	1071	44
H(11)*	N(2)	- 191	990	99
H(12)*	N(2)	-224	863	36

* Positioned by known geometry.

The twofold data were reduced to its unique set of 962 non-zero reflections (for $P4_1$), and a weighting scheme was derived. The $|F_o|$'s were divided into zones of 2.5 e and a mean $|\bar{F}_o|$ and $|\Delta \bar{F}|$ were calculated for each zone. A best-fit curve through the mean values was obtained and expressed as $|\Delta F| = 1.21 + 0.019|F_o|$. Weights w were assigned such that $w = 1.21/|\Delta F|$. Refinement, using the above weighting scheme, stopped at R = 0.102(weighted R = 0.130) after six cycles of full-matrix least-squares calculations (Busing, Martin & Levy, 1962).

All except four hydrogen atoms [H(4), H(5), H(11), and H(12)] were easily located from a three-dimensional difference Fourier map. Peaks corresponding to hydrogen atoms were observed to range in height from 0.7 to 0.9 e Å⁻³. There were no other peaks above 0.4 e Å⁻³. The remaining hydrogens were positioned about their respective nitrogens, assuming a tetrahedral arrangement and an N-H bond length of 1.0 Å. With the hydrogen-atom parameters not varied $(B=3.5 \text{ Å}^2)^c$

Table 4. Final observed and calculated structure factors

The columns are l, $10|F_o|$, $10|F_c|$, and $10^3\varphi_c$ (cycles).

0.	1.1	18 73	76 941	10 1	91 220 980	10 85	95 47	•	147 128 249	2 1	0 129 81	1	165 176 58	8 1	41 154 855	10	96	78 994	2 37	41 870		107	115 161
1 140 2 301 3 465	123 119 281 13 428 860	20 69 21 86 22 35	78 873 80 929	12 2	41 254 974 71 179 60	13 40 14 50	17 155 37 957		86 80 64	10 11	0 86	1	89 77 943 72 44 33	10 1	70 46 87 71 169 999 92 172 869	12	105	118 808 110 897 203 159	3 52	17 872 73 200 89 966	10	48	37 5
5 220	129 820 205 13	23 24	19 814	15 1	62 173 928 33 239 222	2	.0.L	11 1	210 209 828 75 32 219	12 21	9 231 94	67	136 155 99 153 147 182 97 94 942	13 1	59 55 40 83 204 110 90 75 923	15	137	69 123 142 876	6 60 7 84	79 825 103 960	12	57 104	52 66 108 19
7 162	182 969 300 82	2 87	102 83	17 1	28 147 940 41 151 927 12 98 102	0 492	499 0 . I.I	14	100 71 191 74 69 98	14 23	247 87		134 105 932 54 27 817	15	89 63 101 29 123 765	17	90 49	79 130	9 82	73 996		6,5	. L
9 286	307 237 349 61	3 228	246 848 102 991	20 1	53 181 44 00 100 5	0 660	702 0	16	52 44 940	17 11	4 116 90 1 137 80	11	107 99 882	18	75 64 242 72 73 985 81 58 895	20	96 53	111 768	6 0 197	0.L 204 0	1	67	133 0 34 902
12 129	88 190 227 231	6 155 7 52	168 788 32 236	23	60 30 128 66 58 951 59 37 245	1 699 2 511 3 343	522 859 343 41	18 19 20	74 50 982 79 80 755 56 55 868	19 15 20 9 21 9	8 175 12 8 81 95 7 107 92	13	85 75 861	20 21	94 80 782 81 91 956		5.2	2.1	1 161	182 87	į	76 58	82 191 62 941
14 225	211 938 99 60 116 912	9 276	303 26	25	73 65 166	4 258 5 242	261 949	21 22	76 87 90 74 90 14	22 7	8 78 89 2 33 11	16	88 33 852 122 114 974		4.4.L	0	174	182 0 73 67	3 92 4 152 5 45	91 805	6,	77 39 78	62 638 42 48 85 217
17 101	101 150	12 105	122 932	0 3	30 371 0	7 133	119 791 286 982		2.5.1	25 10	2 93 14	19	47 43 992 45 43 998	1 2	10 432 0 61 272 829	3	254	294 883	7 121	17 142		62 92	60 976 94 812
20 44 21 155	49 762	15 51 16 97	45 883	2 4	71 302 872 31 465 954 36 109 173	9 452 10 231	472 887 249 219 140 78	1	189 179 500 43 41 918		3,2,L 		3.6.1		53 33 772 37 142 866		139	167 906 226 136	9 29 10 124	28 977		7.0	il.
27 125 23 114 24 88	118 972	17 65 18 81 19 60	76 986 62 819 28 949	5 2	57 391 161 39 242 72 27 134 789	12 347	397 4		19 243 197 85 67 991	1 16	150 25 205 10	11	97 92 36 52 64 754	6 1	80 195 792 54 266 99	ģ	87 109	91 907	12 108	124 777	1	121 86 142	120 0 84 859 150 999
25 53	42 795	20 43	40 960 74 991	7 1	1 189 82	15 112	100 988	6	185 189 210 198 220 143	5 26	212 84	13	50 29 195 100 78 43	10	30 250 921 52 44 773 82 90 947	10	110 63	123 893 60 159 111 36	14 83	97 961 31 949	2	80	80 934
1 796	767 873	1,0	.L	10 2	1 249 203 16 233 949 37 97 115	10 153	89 33 128 140	10 1	06 108 1 69 54 966 42 163 198	5 14 7 26 8 37	5 135 10 1 254 82 7 185 A	15	51 42 217	12 1	54 160 58 17 174 898	12	89	99 955 59 225	17 57	41 154 41 811	í	38	13 235
2 289 3 868 4 420	270 5T 825 90 425 841	0 32	70 .L	12 23	6 258 996 5 215 925 2 232 867	20 122 21 63 22 64	110 50 36 807	11 1	00 106 160	10 19	230 7	2	63 67 8	14 1	18 129 202	16	31	40 816	6	1.1	10	115	53 152 133 914 84 885
5 207 6 231 7 127	203 227	0 1066 1	1085 0	16 1	1 67 987	23 68 24 137	132 925	14	22 21 842 98 228 110	12 25	248 94		24 28 43	17	62 68 111 51 29 873 99 96 753	19	50 75	41 770 40 939 89 12	0 162	135 500 182 923 180 793	13	73	69 972 83 225 56 876
87 9 521	48 75	2 573	549 14	10 0	6 83 194 92 76	25 51	26 V2	17	33 25 96 97 93 992 36 37 55	14 17	2 187 99 0 191 17 0 135	o	4.0.L 330 330 500	19 20	65 77 22 63 55 782		۰.,		3 117	122 846		7.1	
10 515 11 462 12 245	457 58 256 234	5 295 6 133	214 903 278 182 125 888	20 10	01 91 846 18 89 812 19 91 930	0 317	287 500	20	63 58 114 81 86 971	17 7	78 99		4+1+L	•	4.5.L	î	79 108	40 0 99 988	6 176 7 114	191 173 90 155	0	115 87	103 500 74 859
13 229 14 101 15 147	256 881 117 54 136 60	7 505 8 506 9 196	511 201 510 814 203 910	23 9	1.4.1	2 560	549 6 288 861	•	2.6.6	20 12 21 4	131 91 30 13	1	233 193 500 579 402 98	į.	44 158 30 24 127 46	2	150	151 842	10 71	96 798 83 171	;	90 80 82	97 208 59 119 59 138
16 204	180 247	10 345	346 999 281 242	0 24	2 278 0	5 321	275 147	11	24 141 886	23 11	112 90	1	435 477 813 215 182 762	; '	68 48 910 62 158 774 64 29 795	67	96 113 93	88 17 118 250 74 774	11 82	39 223 140 923 53 185	5	196	37 764
19 127 20 62	128 971 48 868	13 213	230 244	2 11	5 129 118 6 147 987	8 299	287 849	; '	36 235 4 53 57 759 69 67 931	:	1.3.1	67	304 314 216 80 67 166 69 36 28	7	64 59 173 76 72 926 86 86 783		89	226 795	14 137	144 92	9	75	94 756 84 857
21 116 22 58 23 95	122 885 54 792 107 47	15 138 16 94 17 123	140 966 74 838 117 959	5 16	8 160 852 8 156 97 9 142 843	10 447	450 979	,	19 18 854 91 84 232	0 43	433 50	9	267 266 837	9 1 10	12 119 975	11	139	151 892 88 956	17 46	32 43	11	21	29 114 23 766
25 111	59 162 109 880	18 126	125 949	8 15	6 73 791 0 164 66	13 133 14 275	172 39 290 27	10 1	02 77 951 17 112 900	3 13	114 77	11	274 289 778 108 68 154	12	29 23 209 66 64 806 96 95 135	14	75 77 93	50 873 90 144 87 6	۰.	2.L	13	81	75 955 92 207
0,	3+L	21 109 22 104	96 199 105 36	10 15	4 171 6 2 99 81	16 193 17 96	191 194 95 113	12	36 148 932 71 69 205 82 55 20	5 192 6 165 7 11	188 6	13	88 51 29 148 138 955 188 196 250	14 15 16 1	59 39 869 76 55 225 19 123 833	17	187	191 754	0 49 1 91 2 774	37 0		7,2,	ι 104 ο
2 797	790 996 306 770	24 58	42 932		6 158 951 9 97 134 2 134 169	19 71 20 44	68 843 64 984 42 95	14 1	14 92 911 71 62 761 45 38 184	9 17	348 89	16	175 183 761 141 149 22 38 30 898	17	58 55 846	19	-	72 219	3 181	161 821 51 756	12	191	129 146 56 819
4 287 5 263 6 531	261 216 260 71 514 915	1.2.	ι	15 12	8 145 137 4 101 759	21 60 22 173	40 125	17	59 35 142	11 11	109 89	20	48 15 207 97 74 856	•	4 42 500	o	79	\$1 500	6 29 7 105	24 781 107 751	4	109	54 134 113 814 137 225
7 65	86 993 184 150	0 411	354 500 932 42	10 9	6 98 825 0 27 988	24 56 25 24	42 993	0	41 15 500	14 91	98 75	22	85 84 891 51 34 143	2 1	25 123 867 9 198 197	23	61 136 102	19 39 129 888 121 243	8 80 9 132 10 189	76 80 128 174 201 947	;	110	57 106
10 324	217 784	3 365 4 166	383 975	21 2	10 100	2,	3.L	; ;	53 1611000 89 61 929 65 84 820	16 214	210 75		4.2.1	; ;	NA 30 824 97 70 781 50 154 234	;	120	65 213 129 836 130 223	11 90	69 817 63 973	10	75 44 70	70 907
13 235	249 795 263 179	5 346 6 277 7 255	418 90 255 844 268 902		1.6.L 8 102 0	0 370 1 241 2 96	344 D 245 897 82 989	3	84 53 838 60 33 814 06 303 831	19 80 20 133 21 94	63 1 123 99	0 1	42 222 0 39 346 928	8	12 13 181 9 58 85	8	95	89 798 87 872	14 144	129 942 81 216	ii 13	59 87	61 215 82 153
15 107 16 121 17 86	95 770 106 38 91 262	8 273	277 26	2 11	8 92 34 0 120 990	3 200	200 941 230 35	7 1	41 143 42 66 54 218	22 54	32 8 95 80		18 329 97 64 161 873	10 1	77 66 83 79 187 100	10	94	90 47 95 229	17 78	74 239		7,3,	ι
18 198 19 76	185 822 73 106	11 262 12 216	317 921 175 30	5 10	0 140 166	6 162 7 207	147 794 202 32	10	58 36 79 92 79 16	1	. 4. L	•	157 142 236 185 182 947	12 1	57 51 995 52 24 60	12	72 82 92	86 85 73 882 99 894	6, 0 94	3.L 63 0	1	41	21 500
21 114	112 204	13 330	361 18 134 135 163 794	6 8 7 11 8 10	0 90 975 2 118 900 1 98 791	8 209 9 175 10 168	165 245	13	70 52 855 81 84 995	0 45	19 99 85		94 80 47 17 251 833 00 101 26	0 10	4.7.L	16	132	150 779	1 187	174 869	1	136	120 190
23 78 24 62 25 AA	73 155 28 781 83 120	16 181 17 125	176 925	10 5	3 87 802 58 810	11 235	264 193 239 944		3,0,L	3 387	410 99 91 80	12	00 272 59 73 189 892	2	10 79 965 9 76 917	•	5.5		4 71 5 79	48 814 73 816	;	47	136 165
0,4		19 176 20 172	171 28	13 13	74 949	14 131	133 909	1.7	106 38 106 38 109 1092	7 151	90 22		71 52 839 82 205 192	2	61 21 6 81 130 9 64 946	0 1	09 40	23 O 51 155	6 201 7 71	180 812 56 182 17 161	10	93 47	90 796 41 960 23 863
1 190 2 126	213 137	22 64 23 94	50 881 112 816	15 4 16 4	9 57 90 9 57 90 9 49 198	16 265	274 971 38 966 34 178	18 1	52 185 522 50 73 656 58 76 82	8 75 9 125 10 142	42 84	16	87 102 847 17 118 936 10 135 902	, ,	52 54 924	23	120	116 65	9 104	90 812 86 897		7,4,	
3 274 4 138 5 214	257 24	24 118 25 87	95 188 92 9	17 :	7 39 819 3 35 780	10 88	79 104 24 141	21 1	112 454	11 262	277 95 50 80	20	94 100 910 45 37 246	0 12	15 125 0		141 92	143 206 86 766	12 64	51 101 128 834	î	44 36	36 O 25 A3
6 51 7 166	56 892 153 948	1.3.1	L		L.7.L	22 84 23 107	69 794 97 150	24	1 10 76.	14 114	126 7	22	48 23 775		5.1.1	ţ	58 89	\$5 826 102 118	15 76	66 939	3	36 82 94	32 945 86 3 103 229
9 132 10 73	148 70 63 996	1 278	273 229	1 6	2 69 194 64 21	24 162	163 866 4.L		3.1.L	16 90 17 116 18 77	76 84		4.3.L 85 96 500	1 11	00 181 0 14 160 193 12 108 976	11	97 50 87	71 61 84 24	6. 0 25	23 0	67	72	42 997
12 204	207 993 212 71	4 292 2 5 105	10 124 286 912 41 55	3 10 4 80 5 11	121 933 0 69 20 2 131 27	0 168 1 366	154 500 386 19	1 1	2 195 0 2 103 810 4 265 870	20 44	70 86 16 82	2 2	71 174 125 08 214 972 18 152 91	4	7 48 167 12 53 967	13	93 55	96 753 51 115	2 67	30 231		-	.,
14 49	43 905	6 129 7 184 2 8 277	73 36	7 9	45 91	2 228	240 26	20	1 244 801 4 248 33	,	.5.1		34 124 755 44 248 190	1	8 48 890 0 200 881		5.0	۰ L	4 197 5 131	225 205			
17 168	157 169	9 391	418 86	9 I.I	140 15	5 74	52 200	6 2	9 247 814	0 157	100	ĩ 1	24 114 837	9 6	4 27 839	1	133	35 500	7 34	31 245			

full-matrix least-squares refinement was continued until the *R* index converged to 0.097. The average shift/estimated standard deviation was below 0.24, and the goodness-of-fit $[\sum w(F_o - F_c)^2/m - s]^{1/2}$ was 3.1. The final non-hydrogen parameters with estimated standard deviations are given in Table 2, and the hydrogen positions are given in Table 3. The final observed and calculated structure factors are listed in Table 4.

Examination of the final atomic coordinates suggested that the two halves of the cystine molecule were nearly related by a twofold axis of symmetry running through the midpoint of the S(1)-S(2) bond. The same situation was observed for dibenzyl disulfide (Lee & Bryant, 1969). During the final cycles of cystine refinement, several parameters were observed to shift by as much as 80% of their estimated standard deviation. The correlation matrix showed some degree of correlation (0·10 to 0·20) between the S(1) and S(2) parameters. There were also slight parameter correlations between the C(1)-C(4), C(2)-C(5), C(3)-C(6), N(1)-N(2), O(1)-O(3), and O(2)-O(4) atom pairs.

Since the h00 extinctions were not conclusive, other tests were used to determine the correct space group (a choice between $P4_1$ and $P4_12_12$).

One of the tests used to differentiate between space groups was the calculation of an agreement index $(R' = \sum ||F_{hkl}| - |F_{\bar{h}kl}|/\sum |F_{hkl}|)$. The space group $P4_12_12$ requires that $|F_{hkl}| \equiv |F_{\bar{h}kl}|$, while $P4_1$ does not. The k = 0level served as a basis for comparison, since the h0land $\bar{h}0l$ levels are equivalent for both space groups. The results, which are presented in Table 5, show the k = 0 agreement value to be significantly lower than the upper-level values.

Table 5. Agreement values (R') between the hkl and hkl

ieveis	
Level <i>k</i>	R'
0	0.0394
1	0.189
2	0.168
3	0.198
4	0.226
5	0.226

Statistical averages (Karle, Dragonette & Brennen, 1966) also were calculated for the h0l and h1l levels of data. The h0l level is required to be centrosymmetric for $P4_12_12$ and non-centrosymmetric for $P4_1$, while the h1l level is non-centrosymmetric for both space groups. The averages, which are presented in Table 6, indicate that the h0l and h1l levels are closer to being non-centrosymmetric.

As a final test, the structure was further refined by full-matrix least-squares calculations in both space groups $P4_1$ and $P4_12_12$, and the final R indices after convergence were compared. The values obtained were 0.330 and 0.097, respectively. The rather short intermolecular contact of 3.10 Å, observed between C(5) and O(4), helped explain the difficulty of refining in $P4_12_12$. It appears that the major objection to placing the sulfur atoms across a crystallographic twofold axis is the steric interaction between glycine-like groups on adjacent molecules.

Table 6. Statistical tests on the h0l and h1l levels

Observed	Level h0l h1l	⟨ <i>E</i> ⟩ 0·907 0·957	$\begin{array}{c} \left\langle \left E ^2 - 1 \right \right\rangle \\ 0.719 \\ 0.569 \end{array}$
Theoretical	Level Acentric Centric	⟨ <i>E</i> ⟩ 0·886 0·798	$\begin{array}{c} \left\langle \left E ^2 - 1 \right \right\rangle \\ 0.736 \\ 0.968 \end{array}$

It was concluded from the above results that the tetragonal form of L-cystine contains almost, but not quite, a twofold axis of symmetry. $P4_1$ was assigned as the most probable space group for tetragonal L-cystine.

Discussion

Covalent bond lengths and angles for tetragonal (TLC) and hexagonal L-cystine (HLC) (Oughton & Harrison, 1959) are shown in Fig. 2. Each half of the TLC molecule is related by a pseudo-twofold axis of symmetry. A comparison of related covalent bond lengths shows an equivalence, usually within two standard deviations, while related intermolecular distances differ as much as 36 standard deviations $[S(2) \cdots C(1), 3.61 (1) \text{ Å};$ and $S(1) \cdots C(4), 3.97 (1) \text{ Å}]$. The above and other related intermolecular distances indicate that most of the molecule's deviation from twofold symmetry occurs at the β -carbons, C(1) and C(4).

When the covalent bond lengths and angles for TLC

TETRAGONAL L-CYSTINE

HEXAGONAL L-CYSTINE

Fig. 2. Tetragonal and hexagonal (Oughton & Harrison, 1959) L-cystine. A comparison of covalent bond lengths, angles, and conformation. The estimated standard deviations for tetragonal L-cystine vary from 0.006 Å for the S-S distances to 0.019 Å for the C-C distances and from 0.5° for the S-S-C angles to 1.0° for the C-C-C angles.

are compared with those of HLC, all except the sulfur valence angles are equivalent within experimental error. The average sulfur valence angle for TLC is $105 \cdot 2(6)^{\circ}$, which is significantly different from $114 \cdot 5(4)^{\circ}$ for HLC. In fact, this value for HLC is significantly different from the average value 103.6 (11)° for all other structurally determined L-cystine compounds to date (Chaney, 1969).

The molecules of TLC are held together by a network of hydrogen bonds. A molecular packing diagram (Fig. 3) drawn by ORTEP (Johnson, 1965) shows the hydrogen-bonding arrangement and distances. The approximate tetrahedral arrangement of hydrogenbonded oxygen atoms about the amino nitrogens and equivalent carboxyl C-O bond lengths indicate that

both TLC and HLC exist in their zwitterion form. Again, TLC's deviation from crystallographic twofold symmetry is apparent from its non-equivalent hydrogen bonding. The N(1) \cdots O(4) [2.79 (2) Å] and N(2) \cdots O(2) [2.90 (2) Å] hydrogen bonds, related by the pseudotwofold axis, deviate by more than five standard deviations. Both TLC and HLC are found to have the same average hydrogen-bonding distance of 2.82 Å, suggesting that both crystal forms are equally stabilized by hydrogen bonding.

The mean-plane equations and atomic deviations for the glycine-like groups of TLC are listed in Table 7. None of the atoms included in the calculation deviated significantly from their respective mean planes. The amino nitrogens, N(1) and N(2), are observed to deviate by 0.148 and -0.131 Å, respectively.

The molecular conformations of TLC and HLC are similar, as shown in Fig. 2. Both molecules are observed to have a right-handed disulfide chirality (see Fig. 1). An obvious difference in the two conformations is the dihedral angle between the planes of the glycine-like groups on one molecule. For TLC, this dihedral angle is 60.9°, which is significantly different from that of 12.0° for HLC. Another conformational difference is the disulfide dihedral angle [C(4)-S(2)-S(1)-C(1)], which is 69.3° for TLC and 74° for HLC.

The observed molecular conformations of cystine are influenced by the packing forces within the crystal. When the two crystalline-state conformations are compared, we find that most of the conformational differences are at the ends of the molecule, as observed from the dihedral angles between glycine-like groups. This angle for TLC is expected to be close to 90°, since the direction of hydrogen bonding is mostly perpendicular to the crystal's fourfold symmetry. However, for HLC, its hydrogen bonding is in a direction almost parallel to the crystal's sixfold axis, and the glycinelike group dihedral angle is expected to be near 0°. It is interesting to observe that although the glycine-like group dihedral angles differ greatly between conformational states, the disulfide dihedral angles are relatively close in value. It would appear that cystine's confor-

Га	b	le	7.	Least-squares	planes	and	atomic	deviations ((Å)
----	---	----	----	---------------	--------	-----	--------	--------------	----	---

All equations are expressed in orthogonal Ångström space.

I. Equation through atoms C(2), C(3), O(1) and O(2)

$$0.938x - 0.305y - 0.166z = 2.69$$

II. Equation through atoms C(5), C(6), O(3) and O(4)

Standard deviation of atoms from plane =0.008 Å -0.003C(2)

C(3)	0.01
O(1)	- 0.00
O(2)	-0.00
N(1)	0.14

-0.192x + 0.980y + 0.042z = 6.93Standard deviation of atoms from plane =0.010 Å C(5) 0.004 C(6) -0.015

O(3)	0.006
O(4)	0.006
N(2)	-0.131

III. Equation through atoms S(2), S(1) and C(1)

0

$$-0.246x + 0.948y - 0.200z = 3.75$$

IV. Equation through atoms S(1), S(2) and C(4)

C

0.993x - 0.115y - 0.002z = 0.495

Angle between planes I and $II = 60.9^{\circ}$ Angle between planes III and $IV = 69.3^{\circ}$ mational flexibility is a result of the carboxyl groups rotating about the C(2)-C(3) and C(5)-C(6) bonds; the amount of rotation depending upon the packing requirements of its nearest neighbors. Similarly, if *L*-cystine was present in a polypeptide or protein, we would expect its specific conformation to be dependent upon the polypeptide's or protein's backbone conformation.

The authors wish to acknowledge support from the National Science Foundation (Grant GB3807). They are also indebted to Indiana University Medical Center for making computer facilities available, and to the Heart Research Center (Grant HE06308) and U. S. Public Health Service for their support.

References

BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

- CHANEY, M. O. (1969). Ph. D. Thesis, Indiana Univ., 122. CHANEY, M. O. & STEINRAUF, L. K. (1968). Acta Cryst. B24, 1564–1567.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KARLE, I. L., DRAGONETTE, K. S. & BRENNER, S. A. (1965). Acta Cryst. 19, 713-716.
- LEE, J. D. & BRYANT, M. W. R. (1969). Acta Cryst. B25, 2497–2504.
- OUGHTON, B. M. & HARRISON, P. M. (1959). Acta Cryst. 12, 396-404.
- PETERSON, J., STEINRAUF, L. K. & JENSEN, L. H. (1960). Acta Cryst. 13, 104–109.
- PINKERTON, J. M. H. & STEINRAUF, L. K. (1967). J. Org. Chem. 32, 1828–1832.
- STEINRAUF, L. K., PETERSON, J. & JENSEN, L. H. (1958). J. Amer. Chem. Soc. 80, 3835–3838.
- World List of Crystallographic Computer Programs (1966). 2nd ed. Utrecht: Oosthoek.
- YAKEL, H. L. & HUGHES, E. W. (1954). Acta Cryst. 7, 291-297.

Acta Cryst. (1974). B30, 716

Structure Cristalline du Complexe Cobalt (Imidazole)₆ (Acétate)₂ Monohydraté

PAR ALAIN GADET ET ODETTE LEFEBVRE SOUBEYRAN

Laboratoire de Cristallochimie, Tour 44, 11 quai Saint Bernard, 75005 Paris, France

(Reçu le 3 septembre 1973, accepté le 5 novembre 1973)

The Co(Im)₆(Ac)₂. H₂O complex crystallizes in the triclinic system, space group $P\overline{I}$, with one 'molecule' in the unit cell. The unit-cell constants are: a=8.48, b=10.05, c=8.81 Å, $\alpha=90.0$, $\beta=82.3$, $\gamma=94.0^{\circ}$. 1600 reflexions have been collected by photographic methods on a Weissenberg goniometer and the structure has been solved by the heavy-atom method (R=0.095). One water molecule is present in the unit cell and is able to occupy statistically two centrosymmetric positions. The ligands are imidazole groups. The coordination polyhedron is octahedral and does not show significant deformation with respect to a regular octahedron. The ligands do not all have the same orientation. A three-dimensional hydrogen-bond network exists between ligands and the water molecule or acetate groups.

Introduction

L'étude structurale du complexe hydraté $Co(Im)_6(Ac)_2$. H₂O a été abordée à la suite du complexe $Co(Im)_2(Ac)_2$ (Gadet, 1974). Ce dernier ne conserve sa structure tétraédrique que dans les solvants organiques purs ou additionnés de peu d'eau. Un grand pourcentage d'eau le transforme en complexe octaédrique par addition de molécule d'eau (Dobry-Duclaux & May, 1970).

Le complexe $Co(Im)_6(Ac)_2$ obtenu à partir d'une solution aqueuse est un complexe octaédrique qui fait intervenir les mêmes groupements chimiques que le complexe $Co(Im)_2(Ac)_2$. Le travail présenté ici concerne la description de sa structure cristalline, les premiers Tableau 1. Données cristallographiques et physiques

Formule brute: $C_{22}H_{30}O_4N_{12}CO.H_2O$ Système cristallin: triclinique Groupe spatial: $P\overline{1}$, mais P1 est plausible.

a = 8,48 (5) Å b = 10,05 (7) c = 8,81 (5) $\alpha = 90,0 (5)^{\circ}$ $\beta = 82,3 (5)$ $\gamma = 94,0 (5)$ $V = 742 Å^{3}$ Z = 1 $D_{c} = 1,35 \text{ g cm}^{-3} \text{ avec une molécule d'eau}$ $1,39 \text{ g cm}^{-3} \text{ avec deux molécules d'eau}$ $D_{m} = 1,37 \text{ g cm}^{-3}$

Radiation utilisée: Co $K\bar{\alpha}(\lambda = 1,7902 \text{ Å})$