The Crystal and Molecular Structure of Tetragonal L-Cystine

By Michael O. Chaney* and Larry K.Steinrauf
Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, U.S.A.

(Received 8 October 1973; accepted 27 November 1973)

Abstract

The crystal structure of tetragonal L-cystine has been determined from three-dimensional X-ray data. The space group is $P 4_{1}$, with $a=6.710$ (5) and $c=21.73$ (1) $\AA ; Z=4$. The structure was solved by a combination of the $E^{2}-1$ Patterson function to locate the two S atoms, block-diagonal least-squares refinement of the \mathbf{S} coordinates, and tangent-formula phase refinement. The final structure refinement used the full-matrix least-squares method with anisotropic temperature factors for S, O, and N and isotropic terms for C and H . Difficulty was encountered during the final refinement since the molecule contained a pseudo-twofold axis of symmetry. The final R index was 0.097 , based on 962 independent non-zero reflections. The disulfide dihedral angle was found to be $69 \cdot 3^{\circ}$. The molecular conformation is observed to be similar to that of hexagonal L-cystine, with a right-handed disulfide chirality.

Introduction

Cystine (I) structure determinations have been undertaken in this laboratory mainly to determine the range of possible crystal conformations and correlate them with disulfide chirality.

(I)

Previous structure determinations of L-cystine compounds have shown that N, N^{\prime}-diglycyl-L-cystine (Yakel \& Hughes, 1954), L-cystine dihydrochloride (Steinrauf, Peterson \& Jensen, 1958), L-cystine dihydrobromide (Peterson, Steinrauf \& Jensen, 1960), and L-cystine diamide dihydrochloride (Chaney \& Steinrauf, 1968) all possess a left-handed disulfide chirality and similar molecular conformation. Hexagonal l-cystine (Oughton \& Harrison, 1959) and now tetragonal L-cystine in this work possess a right-handed disulfide chirality and a molecular conformation which is different from the above class of cystine compounds. The definition of disulfide chirality is illustrated in Fig. 1.

* The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206, U.S.A.

left-handed

right-handed

Fig. 1. Illustration of right-handed and left-handed disulfide chirality by use of Newman projections. The projections are down the $S-S^{\prime}$ bond.

Experimental

Preparation

L-Cystine was dissolved in a warm 6 N ammonium hydroxide solution and crystallized by evaporation at room temperature. Both plates of the hexagonal form and prisms of the tetragonal form were obtained, the former being by far the more numerous.

Crystal data

$\mathrm{C}_{0} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$

$$
\begin{aligned}
& \quad=6.710(5) \AA \\
& a=21.73(1)
\end{aligned}
$$

$D_{\text {calc }}=1.642 \mathrm{~g} \mathrm{~cm}^{-3}$
$D_{\text {obs }}=1.622 \quad$ Space group: $P 4_{1}$.
The unit-cell dimensions and estimated standard deviations were obtained from Weissenberg photographs, with calibration lines from aluminum ($a_{0}=4.0489 \AA$ at $20^{\circ} \mathrm{C}$) superimposed. Precession and Weissenberg photographs of a tetragonal crystal showed systematic $00 l$ extinctions for $l=4 n+1,2,3$. Because these photographs exhibited possible mirror symmetry, it was difficult to determine the Laue group ($4 / \mathrm{m}$ or $4 / \mathrm{mmm}$). Also, the $h 00$ reflections for $h=2 n+1$ were either absent or very weak. As a result, the space group assignment was ambiguous and was limited to $P 4_{1}, P 4_{1} 2_{2} 2$, and $P 4_{1} 22$. The enantiomorphs to the above space groups were unlikely candidates, since it is known that molecules of L-cystine pack in a left-handed sense about a screw axis.

Intensity data

Intensity data were collected with Zr -filtered Mo $\mathrm{K} \alpha$ ($\lambda=0.71069 \AA$) radiation by the sixth-scan method (Pinkerton \& Steinrauf, 1967) on a Supper-Pace autodiffractometer about the b^{*} axis ($k=0-7$) out to a minimum spacing of $0.8 \AA$. 2226 reflections $(\pm h, k, l)$ were
measured, 2104 of which were observed greater than zero. This set of data was twofold redundant for space group $P 4_{1}$ and fourfold redundant for the space groups with $4 / \mathrm{mmm}$ Laue symmetry. The equivalent data sets ($F_{h k l} \equiv F_{\bar{k} h l}$) were used to scale between levels, and the twofold redundant data were used to solve the structure. Because of the low absorption coefficient ($5 \cdot 24$ cm^{-1}) and the small size of the crystal, absorption corrections were neglected. Both structure factors and normalized structure factors $|E|$ were calculated after corrections for Lorentz and polarization effects had been applied. The atomic scattering factor curves were taken from International Tables for X-ray Crystallography (1962).
An examination of the Patterson map revealed a peak approximately $2 \AA$ from the origin along the c axis, which suggested that the disulfide bond may be in this direction. The same conclusions were reached from efforts to pack four L -cystine molecules from hexagonal L-cystine (Oughton \& Harrison, 1959) into the tetragonal unit cell. When the molecules were oriented with their disulfide bonds parallel to \mathbf{c} and in either the (110), ($\overline{1} 10$), ($\overline{11} 0$), or ($1 \overline{1} 0$) planes, a set of molecular dimensions calculated from the tetragonal cell parameters was in excellent agreement with that of hexagonal lcystine (Table 1).

After the disulfide orientation was known, the Harker sections were interpreted, and the positions for the two non-equivalent sulfurs, $S(1)$ and $S(2)$, were determined. These positions were refined by block-diagonal leastsquares calculations (unit weights and $B=3 \cdot 5 \AA^{2}$) to an R index of 0.396 . The quantity minimized was $\sum w\left(F_{o}-\right.$ $\left.F_{c}\right)^{2}$. All initial considerations indicated the structure to be in the lower-symmetry space group $P 4_{1}$. Because the origin along the 4_{1} screw axis was not defined by symmetry, the z coordinate of $S(1)$ was held fixed during refinement. The least-squares program used was a much modified version of the Sparks, Trueblood \& Okaya program (World List of Crystallographic Computer Programs, 1966). Further refinement was continued with the tangent formula. 237 calculated phases ($\left|E_{h}\right| \geq 1 \cdot 5$), based on the two sulfur positions, gave an $R=0.183\left(R=\left.\sum| | E_{h}\right|_{\text {obs }}-\left.\left|E_{h}\right|_{\text {catc }}\left|/ \sum\right| E_{h}\right|_{\text {obs }}\right)$, after three cycles of tangent refinement. The new phases were used to calculate an E map, from which 10 of the 14 atoms were located. The remaining non-hydrogen atoms were located from a Fourier map, based on the known atom positions. Further block-diagonal least-squares refinement, using unit weights and anisotropic temperature factors for the sulfur, oxygen, and nitrogen atoms, reduced the R index to 0.125 . Fourier difference maps indicated that no anisotropic corrections were neces

Table 1. A comparison of the molecular dimensions for hexagonal and tetragonal L-cystine

	First dimension perpendicular to disulfide (\AA)	Second dimension perpendicular to disulfide (\AA)	Third dimension parallel to disulfide (\AA)
Tetragonal	$4.72\left(\frac{a+b}{2}\right)^{*}$	$4.72\left(\frac{a+b}{2}\right)$	$5.43(c / 4)$
Hexagonal	$4.69(c / 12)$	$4.70\left(\frac{a_{1}+a_{2}}{2}\right)$	$5.42\left(a_{1}\right)$

* The symbols enclosed in parentheses represent the directions along which the dimensions were calculated.

Table 2. Final atomic parameters with estimated standard deviations in parentheses
All values except the isotropic temperature factors $\left(\AA^{2}\right)$ are multiplied by 10^{4}. The anisotropic temperature factors are expressed in the form $\exp \left[-\left(B_{11} h^{2}+B_{22} k^{2}+B_{33} l^{2}+2 B_{12} h k+2 B_{13} h l+2 B_{23} k l\right)\right]$.

	x	y	z	B_{11} or $B_{\text {iso }}$	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
S(1)	1427 (5)	5956 (5)	-461^{*}	161 (8)	145 (7)	24 (1)	35 (6)	-6 (2)	-5 (2)
S(2)	1508 (5)	6603 (5)	457 (3)	185 (8)	179 (8)	18 (1)	74 (6)	24 (2)	25 (2)
O(1)	5411 (16)	2951 (13)	331 (4)	262 (25)	167 (20)	10 (2)	82 (18)	5 (5)	-5 (5)
O(2)	6436 (16)	6022 (17)	380 (4)	247 (27)	336 (32)	9 (2)	-123 (23)	-10 (5)	0 (6)
O(3)	-1906 (15)	10269 (16)	-673 (5)	204 (26)	267 (28)	16 (2)	126 (21)	-13 (5)	-13 (6)
O(4)	1338 (16)	10919 (14)	-770 (5)	264 (27)	166 (22)	14 (2)	-79 (19)	22 (6)	4 (5)
N(1)	4952 (16)	2926 (16)	-877 (5)	175 (24)	162 (24)	9 (2)	40 (18)	3 (5)	8 (5)
N(2)	-1766 (16)	9917 (15)	537 (5)	192 (26)	125 (21)	12 (2)	30 (18)	-8(6)	5 (5)
C(1)	3950 (18)	6417 (18)	-747 (6)	$2 \cdot 47$ (19)					
C(2)	5506 (16)	4844 (18)	- 579 (6)	$2 \cdot 38$ (19)					
C(3)	5834 (17)	4586 (17)	102 (6)	$2 \cdot 28$ (18)					
C(4)	1815 (18)	9266 (19)	483 (6)	2.73 (20)					
C(5)	73 (17)	10526 (16)	248 (6)	2.03 (17)					
C(6)	-190 (19)	10536 (18)	-467 (7)	$2 \cdot 82$ (21)					

[^0]sary for the carbon atoms. Because the $00 l$ data suffered severely from what was probably extinction, it was deleted.

Table 3. Final positional parameters for hydrogen atoms
Atomic positions are multiplied by 10^{3}. All hydrogen atoms were assumed to have an isotropic temperature factor $B=3 \cdot 5$ \AA^{2}.

Hydrogen atom	Attached to	x	y	z
H(1)	$\mathrm{C}(1)$	442	779	-58
H(2)	C(1)	386	649	-123
H(3)	C(2)	688	537	-75
$\mathrm{H} 4)^{*}$	$\mathrm{N}(1)$	388	232	-111
H(5)*	N(1)	504	199	-52
H(6)	$\mathrm{N}(1)$	611	271	-116
H (7)	C (4)	307	962	22
H (8)	C(4)	205	966	95
H(9)	C(5)	45	1199	37
H(10)	N (2)	-300	1071	44
H(11)*	N (2)	-191	990	99
H(12)*	N (2)	-224	863	36

The twofold data were reduced to its unique set of 962 non-zero reflections (for $P 4_{1}$), and a weighting scheme was derived. The $\left|F_{o}\right|$'s were divided into zones of 2.5 e and a mean $\left|\bar{F}_{o}\right|$ and $|\Delta \bar{F}|$ were calculated for each zone. A best-fit curve through the mean values was obtained and expressed as $|\Delta F|=1 \cdot 21+0 \cdot 019\left|F_{o}\right|$. Weights w were assigned such that $w=1 \cdot 21 /|\Delta F|$. Refinement, using the above weighting scheme, stopped at $R=0.102$ (weighted $R=0 \cdot 130$) after six cycles of full-matrix least-squares calculations (Busing, Martin \& Levy, 1962).

All except four hydrogen atoms $[\mathrm{H}(4), \mathrm{H}(5), \mathrm{H}(11)$, and $\mathrm{H}(12)$] were easily located from a three-dimensional difference Fourier map. Peaks corresponding to hydrogen atoms were observed to range in height from 0.7 to $0.9 \mathrm{e}^{\AA^{-3}}$. There were no other peaks above $0.4 \mathrm{e} \AA^{-3}$. The remaining hydrogens were positioned about their respective nitrogens, assuming a tetrahedial arrangement and an $\mathrm{N}-\mathrm{H}$ bond length of $1 \cdot 0 \AA$. With the hydrogen-atom parameters not varied $\left(B=3.5 \AA^{2}\right)^{\text {c }}$

Table 4. Final observed and calculated structure factors
The columns are $l, 10\left|F_{o}\right|, 10\left|F_{c}\right|$, and $10^{3} \varphi_{c}$ (cycles).

full-matrix least-squares refinement was continued until the R index converged to 0.097 . The average shift/estimated standard deviation was below $0 \cdot 24$, and the goodness-of-fit $\left[\sum w\left(F_{o}-F_{c}\right)^{2} / m-s\right]^{1 / 2}$ was 3.1. The final non-hydrogen parameters with estimated standard deviations are given in Table 2, and the hydrogen positions are given in Table 3. The final observed and calculated structure factors are listed in Table 4.

Examination of the final atomic coordinates suggested that the two halves of the cystine molecule were nearly related by a twofold axis of symmetry running through the midpoint of the $\mathrm{S}(1)-\mathrm{S}(2)$ bond. The same situation was observed for dibenzyl disulfide (Lee \& Bryant, 1969). During the final cycles of cystine refinement, several parameters were observed to shift by as much as 80% of their estimated standard deviation. The correlation matrix showed some degree of correlation ($0 \cdot 10$ to $0 \cdot 20$) between the $\mathrm{S}(1)$ and $\mathrm{S}(2)$ parameters. There were also slight parameter correlations between the $\mathrm{C}(1)-\mathrm{C}(4), \mathrm{C}(2)-\mathrm{C}(5), \mathrm{C}(3)-\mathrm{C}(6), \mathrm{N}(1)-$ $\mathrm{N}(2), \mathrm{O}(1)-\mathrm{O}(3)$, and $\mathrm{O}(2)-\mathrm{O}(4)$ atom pairs.

Since the $h 00$ extinctions were not conclusive, other tests were used to determine the correct space group (a choice between $P 4_{1}$ and $P 4_{1} 2_{1}$ 2).

One of the tests used to differentiate between space groups was the calculation of an agreement index ($R^{\prime}=$ $\left.\sum\left|\left|F_{h k l}\right|-\left|F_{\overline{h k} \mid}\right|\right| / \sum\left|F_{h k l}\right|\right)$. The space group $P 4_{1} 2_{1} 2$ requires that $\left|F_{n k l}\right| \equiv\left|F_{\bar{k} k}\right|$, while $P 4_{1}$ does not. The $k=0$ level served as a basis for comparison, since the $h 0 l$ and $\bar{h} 0 l$ levels are equivalent for both space groups. The results, which are presented in Table 5, show the $k=0$ agreement value to be significantly lower than the upper-level values.

Table 5. Agreement values (R^{\prime}) between the hkl and $\overline{h k l}$ levels

Level k	R^{\prime}
0	0.0394
1	0.189
2	0.168
3	0.198
4	0.226
5	0.226

Statistical averages (Karle, Dragonette \& Brennen, 1966) also were calculated for the $h 0 l$ and $h 1 /$ levels of data. The $h 0 l$ level is required to be centrosymmetric for $P 4_{1} 2_{1} 2$ and non-centrosymmetric for $P 4_{1}$, while the $h 1 l$ level is non-centrosymmetric for both space groups. The averages, which are presented in Table 6, indicate that the $h 0 l$ and $h l l$ levels are closer to being non-centrosymmetric.

As a final test, the structure was further refined by full-matrix least-squares calculations in both space groups $P 4_{1}$ and $P 4_{1} 2_{1} 2$, and the final R indices after convergence were compared. The values obtained were 0.330 and 0.097 , respectively. The rather short intermolecular contact of $3 \cdot 10 \AA$, observed between $\mathrm{C}(5)$ and $\mathrm{O}(4)$, helped explain the difficulty of refining in $P 4_{1} 2_{1} 2$. It appears that the major objection to placing
the sulfur atoms across a crystallographic twofold axis is the steric interaction between glycine-like groups on adjacent molecules.

Table 6. Statistical tests on the h0l and h1l levels				
Observed	Level	$\langle \| E\rangle$	$\left\langle\\|\left. E\right\|^{2}-1 \mid\right\rangle$	
	$h 0 l$	0.907	0.719	
	$h 1 l$	0.957	0.569	
Theoretical	Level	$\langle \| E\rangle$	$\langle \|\|E\|^{2}-1\| \rangle$	
	Acentric	0.886	0.736	
	Centric	0.798	0.968	

It was concluded from the above results that the tetragonal form of l-cystine contains almost, but not quite, a twofold axis of symmetry. $P 4_{1}$ was assigned as the most probable space group for tetragonal L-cystine.

Discussion

Covalent bond lengths and angles for tetragonal (TLC) and hexagonal L-cystine (HLC) (Oughton \& Harrison, 1959) are shown in Fig. 2. Each half of the TLC molecule is related by a pseudo-twofold axis of symmetry. A comparison of related covalent bond lengths shows an equivalence, usually within two standard deviations, while related intermolecular distances differ as much as 36 standard deviations $[\mathrm{S}(2) \cdots \mathrm{C}(1), 3 \cdot 61$ (1) \AA; and $\mathrm{S}(1) \cdots \mathrm{C}(4), 3.97$ (1) $\AA]$. The above and other related intermolecular distances indicate that most of the molecule's deviation from twofold symmetry occurs at the β-carbons, $\mathrm{C}(1)$ and $\mathrm{C}(4)$.

When the covalent bond lengths and angles for TLC

Fig. 2. Tetragonal and hexagonal (Oughton \& Harrison, 1959) L-cystine. A comparison of covalent bond lengths, angles, and conformation. The estimated standard deviations for tetragonal L-cystine vary from $0.006 \AA$ for the S-S distances to $0.019 \AA$ for the C -C distances and from 0.5° for the S-S-C angles to $1 \cdot 0^{\circ}$ for the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles.
are compared with those of HLC, all except the sulfur valence angles are equivalent within experimental error. The average sulfur valence angle for TLC is $105 \cdot 2(6)^{\circ}$, which is significantly different from $114 \cdot 5(4)^{\circ}$ for HLC. In fact, this value for HLC is significantly different from the average value $103 \cdot 6$ (11) ${ }^{\circ}$ for all other structurally determined L-cystine compounds to date (Chaney, 1969).

The molecules of TLC are held together by a network of hydrogen bonds. A molecular packing diagram (Fig. 3) drawn by ORTEP (Johnson, 1965) shows the hydrogen-bonding arrangement and distances. The approximate tetrahedral arrangement of hydrogenbonded oxygen atoms about the amino nitrogens and equivalent carboxyl $\mathrm{C}-\mathrm{O}$ bond lengths indicate that

Fig. 3. A molecular packing diagram of tetragonal L-cystine. The estimated standard deviations for hydrogen-bond distances vary from 0.01 to $0.02 \AA$.
both TLC and HLC exist in their zwitterion form. Again, TLC's deviation from crystallographic twofold symmetry is apparent from its non-equivalent hydrogen bonding. The $\mathrm{N}(1) \cdots \mathrm{O}(4)[2 \cdot 79(2) \AA]$ and $\mathrm{N}(2) \cdots \mathrm{O}(2)$ [$2 \cdot 90$ (2) \AA] hydrogen bonds, related by the pseudotwofold axis, deviate by more than five standard deviations. Both TLC and HLC are found to have the same average hydrogen-bonding distance of $2 \cdot 82 \AA$, suggesting that both crystal forms are equally stabilized by hydrogen bonding.
The mean-plane equations and atomic deviations for the glycine-like groups of TLC are listed in Table 7. None of the atoms included in the calculation deviated significantly from their respective mean planes. The amino nitrogens, $\mathrm{N}(1)$ and $\mathrm{N}(2)$, are observed to deviate by 0.148 and $-0.131 \AA$, respectively.
The molecular conformations of TLC and HLC are similar, as shown in Fig. 2. Both molecules are observed to have a right-handed disulfide chirality (see Fig. 1). An obvious difference in the two conformations is the dihedral angle between the planes of the glycine-like groups on one molecule. For TLC, this dihedral angle is $60 \cdot 9^{\circ}$, which is significantly different from that of $12 \cdot 0^{\circ}$ for HLC. Another conformational difference is the disulfide dihedral angle $[\mathrm{C}(4)-\mathrm{S}(2)-\mathrm{S}(1)-\mathrm{C}(1)]$, which is 69.3° for TLC and 74° for HLC.
The observed molecular conformations of cystine are influenced by the packing forces within the crystal. When the two crystalline-state conformations are compared, we find that most of the conformational differences are at the ends of the molecule, as observed from the dihedral angles between glycine-like groups. This angle for TLC is expected to be close to 90°, since the direction of hydrogen bonding is mostly perpendicular to the crystal's fourfold symmetry. However, for HLC, its hydrogen bonding is in a direction almost parallel to the crystal's sixfold axis, and the glycinelike group dihedral angle is expected to be near 0°. It is interesting to observe that although the glycine-like group dihedral angles differ greatly between conformational states, the disulfide dihedral angles are relatively close in value. It would appear that cystine's confor-

Table 7. Least-squares planes and atomic deviations (\AA)
All equations are expressed in orthogonal Ångström space.
I. Equation through atoms $\mathrm{C}(2), \mathrm{C}(3), \mathrm{O}(1)$ and $\mathrm{O}(2)$

$$
0.938 x-0.305 y-0.166 z=2.69
$$

Standard deviation of atoms from plane $=0.008 \AA$

$\mathrm{C}(2)$	-0.003
$\mathrm{C}(3)$	0.011
$\mathrm{O}(1)$	-0.004
$\mathrm{O}(2)$	-0.004
$\mathrm{~N}(1)$	0.148

III. Equation through atoms $\mathrm{S}(2), \mathrm{S}(1)$ and $\mathrm{C}(1)$
$-0.246 x+0.948 y-0.200 z=3.75$
II. Equation through atom; $\mathrm{C}(5), \mathrm{C}(6), \mathrm{O}(3)$ and $\mathrm{O}(4)$

$$
-0.192 x+0.980 y+0.042 z=6.93
$$

Standard deviation of atoms from plane $=0.010 \AA$

$\mathrm{C}(5)$	0.004
$\mathrm{C}(6)$	-0.015
$\mathrm{O}(3)$	0.006
$\mathrm{O}(4)$	0.006
$\mathrm{~N}(2)$	-0.131

IV. Equation through atoms $\mathrm{S}(1), \mathrm{S}(2)$ and $\mathrm{C}(4)$

$$
0.993 x-0.115 y-0.002 z=0.495
$$

mational flexibility is a result of the carboxyl groups rotating about the $\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{C}(5)-\mathrm{C}(6)$ bonds; the amount of rotation depending upon the packing requirements of its nearest neighbors. Similarly, if L-cystine was present in a polypeptide or protein, we would expect its specific conformation to be dependent upon the polypeptide's or protein's backbone conformation.

The authors wish to acknowledge support from the National Science Foundation (Grant GB3807). They are also indebted to Indiana University Medical Center for making computer facilities available, and to the Heart Research Center (Grant HE06308) and U. S. Public Health Service for their support.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Chaney, M. O. (1969). Ph. D. Thesis, Indiana Univ., 122.
Chaney, M. O. \& Steinrauf, L. K. (1968). Acta Cryst. B24, 1564-1567.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Karle, I. L., Dragonette, K. S. \& Brenner, S. A. (1965). Acta Cryst. 19, 713-716.
Lee, J. D. \& Bryant, M. W. R. (1969). Acta Cryst. B25, 2497-2504.
Oughton, B. M. \& Harrison, P. M. (1959). Acta Cryst. 12, 396-404.
Peterson, J., Steinrauf, L. K. \& Jensen, L. H. (1960). Acta Cryst. 13, 104-109.
Pinkerton, J. M. H. \& Steinrauf, L. K. (1967). J. Org. Chem. 32, 1828-1832.
Steinrauf, L. K., Peterson, J. \& Jensen, L. H. (1958). J. Amer. Chem. Soc. 80, 3835-3838.

World List of Crystallographic Computer Programs (1966). 2nd ed. Utrecht: Oosthoek.
Yakel, H. L. \& Hughes, E. W. (1954). Acta Cryst. 7, 291-297.

Acta Cryst. (1974). B30, 716

Structure Cristalline du Complexe Cobalt (Imidazole) ${ }_{6}$ (Acétate) $\mathbf{2}_{2}$ Monohydraté

Par Alain Gadet et Odette Lefebvre Soubeyran
Laboratoire de Cristallochimie, Tour 44, 11 quai Saint Bernard, 75005 Paris, France

(Reçu le 3 septembre 1973, accepté le 5 novembre 1973)

Abstract

The $\mathrm{Co}(\mathrm{Im})_{6}(\mathrm{Ac})_{2} . \mathrm{H}_{2} \mathrm{O}$ complex crystallizes in the triclinic system, space group $P \overline{1}$, with one 'molecule' in the unit cell. The unit-cell constants are: $a=8 \cdot 48, b=10 \cdot 05, c=8 \cdot 81 \AA, \alpha=90 \cdot 0, \beta=82 \cdot 3, \gamma=94.0^{\circ}$. 1600 reflexions have been collected by photographic methods on a Weissenberg goniometer and the structure has been solved by the heavy-atom method ($R=0.095$). One water molecule is present in the unit cell and is able to occupy statistically two centrosymmetric positions. The ligands are imidazole groups. The coordination polyhedron is octahedral and does not show significant deformation with respect to a regular octahedron. The ligands do not all have the same orientation. A three-dimensional hydrogen-bond network exists between ligands and the water molecule or acetate groups.

Introduction

L'étude structurale du complexe hydraté $\mathrm{Co}(\mathrm{Im})_{6}(\mathrm{Ac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ a été abordée à la suite du complexe $\mathrm{Co}(\mathrm{Im})_{2}(\mathrm{Ac})_{2}$ (Gadet, 1974). Ce dernier ne conserve sa structure tétraédrique que dans les solvants organiques purs ou additionnés de peu d'eau. Un grand pourcentage d'eau le transforme en complexe octaédrique par addition de molécule d'eau (Dobry-Duclaux \& May, 1970).

Le complexe $\mathrm{Co}(\mathrm{Im})_{6}(\mathrm{Ac})_{2}$ obtenu à partir d'une solution aqueuse est un complexe octaédrique qui fait intervenir les mêmes groupements chimiques que le complexe $\mathrm{Co}(\mathrm{Im})_{2}(\mathrm{Ac})_{2}$. Le travail présenté ici concerne la description de sa structure cristalline, les premiers

Tableau 1. Données cristallographiques et physiques

> Formule brute: $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}_{12} \mathrm{Co} . \mathrm{H}_{2} \mathrm{O}$
> Système cristallin: triclinique
> Groupe spatial: $P \overline{1}$, mais $P 1$ est plausible.
> $a=8,48(5) \AA$
> $b=10,05(7)$
> $c=8,81(5)$
> $\alpha=90,0(5)^{\circ}$
> $\beta=82,3(5)$
> $\gamma=94,0(5)$
> $V=742 \AA^{3}$
> $Z=1$
> $D_{c}=1,35 \mathrm{~g} \mathrm{~cm}^{-3}$ avec une molécule d'eau
> $\quad 1,39 \mathrm{~g} \mathrm{~cm}^{-3}$ avec deux molécules d'eau
> $D_{m}=1,37 \mathrm{~g} \mathrm{~cm}^{-3}$
> Radiation utilisée: Co $K \bar{\alpha}(\lambda=1,7902 \AA)$

[^0]: * This parameter was held constant during refinement.

